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Longitudinal vortices in a laminar natural
convection boundary layer flow on an inclined
flat plate and their influence on heat transfer
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Institut für Technische Thermodynamik, Technische Universität Darmstadt, Petersenstr. 30,

D-64287 Darmstadt, Germany

(Received 14 December 1999 and in revised form 24 August 2000)

The linear and nonlinear growth of longitudinal vortices in a laminar boundary layer
and the development of secondary instabilities are investigated theoretically and by
experiment. As a prototype problem the natural convection flow along a constant-
heat-flux inclined flat plate in water is chosen. Based upon the smallness of the
plate’s angle of inclination from the vertical, the largeness of the Grashof number,
and the smallness of the vortex strength, a perturbation method is used to derive
and solve a consistent set of governing equations for the linear, weakly nonlinear and
the strongly nonlinear regimes which is asymptotically correct to first order. Liquid-
crystal thermography based on wide-band liquid crystals is used to provide full-field,
highly accurate wall temperature measurements and visualizations.

The spanwise periodic thickening and thinning of the boundary layer through a
nonlinear, but steady, vortex growth is seen to be responsible for practically all of
the increase of mean heat transfer values during the laminar–turbulent transition.
Secondary instabilties in the form of sinuous and varicose unsteady wave modes
and the steady merging of vortices are visualized but are seen to have only a minor
additional influence on mean heat transfer.

1. Introduction
Two-dimensional laminar boundary layers may become unstable with respect

to three-dimensional disturbances in the form of steady, streamwise-oriented, and
counter-rotating vortices (see figure 1). Well known are the Taylor (Taylor 1923), Dean
(Dean 1928) and Görtler vortices (Görtler 1940), which are caused by a centrifugal
instability, as well as the longitudinal vortices appearing in mixed (Görtler 1958) and
natural convection flows (Sparrow & Husar 1969) as result of a buoyancy-induced
instability. Through a nonlinear distortion of the boundary layer these longitudinal
vortices may increase mean values of skin friction and heat transfer several times
compared to the undisturbed values. Whereas the increase in skin friction is generally
a disadvantage in technical applications the increased heat transfer can be exploited
in some applications such as heat exchangers, but should be avoided in others such
as gas turbine applications, for instance. Besides these direct effects, the longitudinal
vortices may indirectly lead to a laminar–turbulent transition in the nonlinear regime
by destabilizing rapidly growing secondary instabilities which finally lead to turbu-
lence. Therefore, the appearance of longitudinal vortices in a laminar boundary layer
is generally an indicator of forthcoming turbulence.

For the case of a natural convection boundary layer flow along an inclined flat plate
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Figure 1. Longitudinal vortices in a laminar natural convection boundary-layer flow along a
heated inclined flat plate. Black shades are used to show the boundary-layer’s wavy structure.

an attempt will be made here to investigate the nonlinear effects of the vortex, with
special emphasis on heat transfer. Until now, no nonlinear theoretical investigation
capable of determining the velocity and temperature profiles in the nonlinear regime,
which give rise to the increase of mean values, has existed for this case, to the authors’
knowledge. Also, no experimental heat transfer data suitable for detailed comparison
with theoretical results are available. This paper is, therefore, devoted to both of these
tasks. Further cases are investigated in a similar manner by Jeschke (1998). These are
the Görtler case of a forced convection flow along a curved wall and the case of a
mixed convection flow along a flat plate.

Sparrow & Husar (1969), Lloyd & Sparrow (1970), and Lloyd (1974) were the first
to prove experimentally the existence of longitudinal vortices in a natural convection
flow along an inclined flat plate. With an electrochemical flow visualization they
were able to identify longitudinal vortices in their water flow for inclination angles
of 17◦ or greater from the vertical whereas the mode of instability for angles of
14◦ or less was a two-dimensional wave structure. In between 14◦ and 17◦ both
modes were found to coexist. However, even though these experiments showed the
existence of longitudinal vortices in a natural convection flow along inclined surfaces,
there were several later heat transfer measurements (Fujii & Imura 1972; Pera &
Gebhart 1973; Black & Norris 1975; Vliet & Ross 1975; King & Reible 1991) with
no explicit identification of such vortices. The same is true for several investigations
of natural convection flows along heated horizontal surfaces (Goldstein, Sparrow &
Jones 1973; Lloyd & Moran 1974; Yousef, Tarasuk & McKeen 1982; Kitamura &
Kimura 1995) for which the buoyancy force destabilizes the flow in an analogous
way. However, in the liquid crystal visualizations of Kitamura & Kimura (1995) the
vortices’ influence can clearly be identified. Cheng & Kim (1988) have shown by smoke
visualizations that longitudinal vortices do indeed exist in such an environment. The
only known measurements explicitly investigating the influence of the vortices on heat
transfer along an inclined flat plate are due to Shaukatullah & Gebhart (1978). Using
embedded thermocouples in their constant-heat-flux plate as well as thermocouples
and hot-film anemometers on a traversing mechanism they measured heat transfer
coefficients as well as temperatures and velocity profiles within the boundary layer



Longitudinal vortices and their influence on heat transfer 315

in a water flow for inclination angles between 14◦ and 29◦ from the vertical. They
concluded from their velocity measurements that the modification of the temperature
profiles is due to the existence of a longitudinal vortex system. However, owing to the
use of thermocouples, the resolution of the spanwise measurements of the boundary-
layer temperatures across one vortex pair with a wavelength of approximately 1 cm
was limited. Also, the downstream heat transfer data were not sufficient to record
the development of mean values during the transition process. Zuercher, Jacobs &
Chen (1998) have recently experimentally investigated the secondary instabilities of
longitudinal vortices along an isothermal plate in water. Using a schlieren visualization
technique they identified as the dominant secondary instability effect a merging of
the schlieren streaks that correspond to the vortices’ hot upwash legs. Unsteady wave
modes just before ‘vortex merger’ were also identified.

For the natural convection case treated here the previous theoretical work has
been limited to the primary stability problem, with the exception of that of Chen
et al. (1991) who investigated vortex merger as a secondary stability problem. The
traditional technique for the primary stability problem had been the solution of
a normal-mode eigenvalue problem until Hall (1983) showed that in Görtler flow,
apart from the high-wavenumber limit, use of the normal-mode eigenvalue solution
cannot be justified to find neutral stability. The same argument should also apply
for the natural convection case due to the similarity of the two. However, for the
natural convection case only linear eigenvalue approaches exist, the first of which
were normal-mode analyses carried out by Haaland & Sparrow (1973) and Hwang &
Cheng (1973). Both determined stability diagrams whose critical point disagreed by
several orders of magnitude with values extracted from experimental data. Further
linear eigenvalue approaches were made by Kahawita & Meroney (1974), Iyer &
Kelly (1974), Chen & Tzuoo (1982), Tien, Chen & Armaly (1986), and Lee, Chen
& Armaly (1992) sometimes with different terms in the disturbance equations to
attempt to take correct account of the non-parallelism of the basic flow. Chen et
al. (1991) solved governing equations for the nonlinear evolution of the vortex rolls
that essentially were nonlinear extensions of those from Haaland & Sparrow (1973),
i.e. they imposed a modified parallel flow approximation. Owing to the omission of
the interaction between the vortical disturbances and the mean flow, their nonlinear
theory was not able to predict any increase in integral parameters such as mean heat
transfer values.

The theoretical approach of this study (§ 2) makes use of a perturbation method
to derive a consistent set of governing equations for the linear, weakly nonlinear and
strongly nonlinear regimes which is asymptotically correct to first order. The theory
and the resulting equations for the linear regime are analogous to those of Hall
(1983) for the Görtler case and Hall & Morris (1992) for the heated Blasisus case.
The weakly nonlinear analysis is new, whereas the theory and governing equations
for the strongly nonlinear regime are again analogous to those of Hall (1988) for the
Görtler case and can be compared to Hall’s (1993) high-wavenumber theory for the
heated Blasius case. Our solution procedure for the governing equations is similar
to that used by Lee & Liu (1992) and Liu & Lee (1995) for the Görtler case and
the heated Blasius case, respectively. The experimental procedure of this study (§ 3)
is thermochromic liquid crystal (TLC) thermography which is described in detail in
Jeschke, Biertümpfel & Beer (2000). The steady-state constant-heat-flux method using
wide-band TLCs is applied which provides full-field and high-resolution heat transfer
results and wall temperature visualizations. The vortices’ effect on the kinematics
of the flow, their influence on wall heat transfer and the experimentally observed
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Figure 2. Sketch of the problem.

secondary instabilities are presented (§ 4). A thorough description of the theoretical
and experimental methods as well as the results is given in Jeschke (1998).

2. Theoretical method
2.1. Formulation of the problem

A laminar natural convection boundary layer flow along an inclined constant-heat-
flux plate is considered with boundary conditions as specified in figure 2. There, the
plate inclination angle γ, the specific wall heat flux q̇w , the wall surface temperature Tw ,
the far-field temperature T∞, the far-field velocity U∞, and the dimensional Cartesian
coordinates {x+, y+, z+} are identified. Naturally occurring longitudinal vortices, i.e.
triggered by infinitesimally small disturbances, are assumed to develop on top of
the otherwise two-dimensional boundary layer flow in the case of instability. The
dimensionless amplitude ε of the vortices is therefore assumed to be small initially. In
addition, the plate is set to be almost parallel to the gravitational vector g, and the
Grashof number Gr∗L, evaluated at a downstream distance L which is characteristic of
the locus of vortex inception, is considered to be large, while the stability parameter
N∗L is fixed to be finite in agreement with the experimental results. The Prandtl number
Pr is taken to be finite too. Thus, the problem is taken to be characterized by

Gr∗L =
βq̇wg cos γL4

λν2
→∞, tan γ → 0, ε→ 0, (2.1)

N∗L = tan γGr∗L
1/5
, P r =

ηcp

λ
fixed. (2.2)

β is the coefficient of thermal expansion, λ the thermal conductivity, cp the specific
heat at constant pressure, ν the kinematic viscosity, and η the dynamic viscosity. The
Grashof number is based on g cos γ since in the limits of equation (2.1) the solution is
then not explicitly dependent upon γ but only implicitly upon Gr∗L and N∗L as defined
in equations (2.1) and (2.2).

The primary reference lengthscale is L and the primary reference velocity deter-
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mined from a balance of the driving effects, i.e. buoyancy and convection for the
x+-momentum, is Utyp =

√
β(Tw − T∞)typg cos γL while the primary reference tem-

perature change (Tw − T∞)typ = q̇wLGr
∗
L
−1/5/λ can be estimated a posteriori from

the inner solution satisfying the constant-heat-flux wall boundary condition (Jeschke
1998). Using L and Utyp one arrives at the dimensionless coordinates {X,Y , Z}
and the corresponding velocity components {U,W,V }, respectively. The dimension-
less pressure follows from P = p+/(ρU2

typ) and the dimensionless temperature from
T = (T+ − T∞)/(Tw − T∞)typ with p+, T+, and ρ being the dimensional pressure,
dimensional temperature, and density, respectively.

Starting from the steady Boussinesq equations in Cartesian coordinates, the gov-
erning equations comprising equations for the conservation of mass, momentum, and
energy then are

∂U

∂X
+
∂V

∂Y
+
∂W

∂Z
= 0, (2.3)

U
∂U

∂X
+ V

∂U

∂Y
+W

∂U

∂Z
= −∂P

∂X
+ T + Gr∗L

−2/5

[
∂2U

∂X2
+
∂2U

∂Y 2
+
∂2U

∂Z2

]
, (2.4)

U
∂V

∂X
+ V

∂V

∂Y
+W

∂V

∂Z
= − ∂P

∂Y
+ tan γT + Gr∗L

−2/5

[
∂2V

∂X2
+
∂2V

∂Y 2
+
∂2V

∂Z2

]
, (2.5)

U
∂W

∂X
+ V

∂W

∂Y
+W

∂W

∂Z
= −∂P

∂Z
+ Gr∗L

−2/5

[
∂2W

∂X2
+
∂2W

∂Y 2
+
∂2W

∂Z2

]
, (2.6)

U
∂T

∂X
+ V

∂T

∂Y
+W

∂T

∂Z
= Pr−1Gr∗L

−2/5

[
∂2T

∂X2
+
∂2T

∂Y 2
+
∂2T

∂Z2

]
, (2.7)

with wall condition:

U = V = W = 0,
∂T

∂Y
= −Gr∗L1/5

for Y = 0, X > 0, (2.8)

and upstream condition:

U = V = W = T = 0 for X → −∞ (2.9)

The boundary conditions are specified according to figure 2.
For the weakly nonlinear and the nonlinear downstream calculation initial con-

ditions must be specified. But in the case of naturally occurring vortices, neither the
vortex origin nor the initial vortex strength are known since the vortices are triggered
randomly. However, any infinitesimally small initial disturbances will develop into
vortices according to the linear stability solution governed by equations (2.27)–(2.34)
from which the disturbance quantities ust, vst, wst, tst and the relative scaling of the
cross-stream velocities in equations (2.10)–(2.13) can be taken. But the amplitude ε
up to which the vortices have grown at x+ = L is a function of the triggering and
can therefore only be supplied by comparison with experiment. For our calculations,
ε and L are chosen to achieve best agreement between theory and experiment for
the location where the mean Nusselt numbers deviate from the basic flow values (cf.
figure 11), thereby indirectly providing this necessary initial information. The initial
conditions can then be specified as

U(X = 1, Y , Z ) = Ugr(X = 1, Y ) + εust(X = 1, y, z), (2.10)

V (X = 1, Y , Z ) = Vgr(X = 1, Y ) + εGr∗L
−1/5

vst(X = 1, y, z), (2.11)
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W (X = 1, Y , Z ) = Wgr(X = 1, Y ) + εGr∗L
−1/5

wst(X = 1, y, z), (2.12)

T (X = 1, Y , Z ) = Tgr(X = 1, Y ) + εtst(X = 1, y, z), (2.13)

with

Ugr, Vgr, . . . , ust, vst, . . . = O(1).

Ugr , Vgr , Wgr , Tgr are the basic flow quantities and y, z are defined below in equations
(2.14) and (2.15).

2.2. Linear and weakly nonlinear approximation

The formulated problem comprises a multiple-limit perturbation problem associated
with the perturbation quantities Gr∗L, tan γ, and ε. N∗L is the similarity parameter
which, in combination with equation (2.2), specifies the relative rates at which Gr∗L
and tan γ approach their limits. In effect, the independent limits ε→ 0 and Gr∗L →∞
remain. The former leads to a regular perturbation problem whereas the latter results
in a singular one which is solved using the method of matched asymptotic expansions.
Since the Grashof number is typically very large it is sufficient to consider only the

leading term of the expansion in Gr∗L and disregard terms of O(Gr∗L
−1/5) or less

whereas for the expansion in ε a five-term expansion is carried out within the scope
of the weakly nonlinear approach and no expansion is made within the scope of
the strongly nonlinear approach. This accounts for the fact that the disturbance
amplitude grows starting from an infinitesimally small value up to order-one values
as the vortices move downstream.

Up to the leading term in Gr∗L the outer expansion gives the trivial solution of a
quiescent fluid of constant pressure at far-field temperature. However, owing to the
loss of the highest derivatives, the outer solution becomes singular at Y → 0 where it
cannot satisfy the temperature boundary condition. In this region of non-uniformity
the inner problem is constructed where independent and dependent variables are
denoted by lower-case letters. Stretching the wall-normal coordinate by

y = Y Gr∗L
1/5

with y = O(1) (2.14)

then leads to an inner solution that does not share the outer solution’s degeneracy.
Since the typical lengthscales of the vortical disturbances are equal in the wall-normal
and spanwise direction it also follows that

z = ZGr∗L
1/5

with z = O(1). (2.15)

Substituting equations (2.14), (2.15) into (2.3)–(2.9) and replacing

tan γ = N∗LGr
∗
L
−1/5

, (2.16)

then leads to the inner equations being a function of only ε and Gr∗L for which all
dependent variables can be expanded:

U = u0
1 + εu∗1 + ε2u∗∗1 + · · ·+ Gr∗L

−1/5
[u0

2 + εu∗2 + ε2u∗∗2 + · · ·] + · · · , (2.17)

V = v0
1 + εv∗1 + ε2v∗∗1 + · · ·+ Gr∗L

−1/5
[v0

2 + εv∗2 + ε2v∗∗2 + · · ·] + · · · , (2.18)

W = 0 + εw∗1 + ε2w∗∗1 + · · ·+ Gr∗L
−1/5

[0 + εw∗2 + ε2w∗∗2 + · · ·] + · · · , (2.19)

P = p0
1 + εp∗1 + ε2p∗∗1 + · · ·+ Gr∗L

−1/5
[p0

2 + εp∗2 + ε2p∗∗2 + · · ·] + · · · , (2.20)

T = t01 + εt∗1 + ε2t∗∗1 + · · ·+ Gr∗L
−1/5

[t02 + εt∗2 + ε2t∗∗2 + · · ·] + · · · , (2.21)



Longitudinal vortices and their influence on heat transfer 319

with

u0
1, u
∗
1, . . . , v

0
1 , v
∗
1 , . . . = O(1),

and

X, y, z = O(1), Gr∗L →∞, ε→ 0.

Here it is anticipated that, for the given boundary conditions, the basic solution
variables (denoted by 0) will be functions only of (X, y) with no spanwise velocity
component whereas all higher-order variables are functions of (X, y, z) in general.

Substituting (2.17)–(2.21) into (2.3)–(2.13), taking the limits (2.1), (2.2), using the
already known outer solution, and applying the asymptotic matching principle of
Van Dyke (1975) to provide boundary conditions at y → ∞, then leads to the
approximations given below in a strictly formal manner (see Jeschke 1998).

2.2.1. Zeroth-order, basic solution

According to the expansion (2.17)–(2.21), the zeroth-order variables are u0
1, v

0
1 , p0

1,
t01. The formal procedure leads to v0

1 = 0, p0
1 = const and gives u0

1, t
0
1 as a solution to

∂u0
1

∂X
+
∂v0

2

∂y
= 0, (2.22)

u0
1

∂u0
1

∂X
+ v0

2

∂u0
1

∂y
− t01 − ∂2u0

1

∂y2
= 0, (2.23)

u0
1

∂t01
∂X

+ v0
2

∂t01
∂y
− Pr−1 ∂

2t01
∂y2

= 0, (2.24)

with wall condition

u0
1 = v0

2 = 0,
∂t01
∂y

= −1, for X > 0, y = 0, (2.25)

and matching condition

u0
1 = t01 = 0 for y = ∞. (2.26)

Equations (2.22)–(2.24) arise from the continuity, X-momentum, and energy equations,
respectively, and are formally identical with the equations for a natural convection
flow along a vertical plate. v0

2 appears in equations (2.22)–(2.24) and must therefore

be solved for, but has only a higher-order contribution of O(Gr∗L
−1/5) which was

neglected. The wall-normal buoyancy appears to leading order within the equation

u0
1

∂v0
2

∂X
+ v0

2

∂v0
2

∂y
−N∗Lt01 +

∂p0
3

∂y
− ∂2v0

2

∂y2
= 0

(Jeschke 1998). However, since u0
1, v

0
2 , and t01 are known from (2.22)–(2.26) this

equation merely determines p0
3 which has the neglected higher-order contribution of

O(Gr∗L
−2/5). Equations (2.22)–(2.26) without wall-normal buoyancy, therefore, indeed

comprise the consistent zeroth-order approximation. Since the term N∗Lt∗1 appears
in equation (2.29) this is surprising, nevertheless correct. Equations (2.22)–(2.26) are
readily solved by a similarity solution in combination with a numerical Runge–Kutta
shooting method.
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2.2.2. First-order, linear solution

In the linear problem the O(ε) terms in (2.17)–(2.21), i.e. u∗1, v∗1 , w∗1 , p∗1, and t∗1 are
solved for. Applying the formal perturbation method it is seen that v∗1 = w∗1 = p∗1 = 0
and that u∗1, t∗1 must be determined from the following system of equations arising
from the continuity, X-, y-, z-momentum, and the energy equations:

∂u∗1
∂X

+
∂v∗2
∂y

+
∂w∗2
∂z

= 0, (2.27)

u0
1

∂u∗1
∂X

+ u∗1
∂u0

1

∂X
+ v0

2

∂u∗1
∂y

+ v∗2
∂u0

1

∂y
− t∗1 − ∂2u∗1

∂y2
− ∂2u∗1
∂z2

= 0, (2.28)

u0
1

∂v∗2
∂X

+ u∗1
∂v0

2

∂X
+ v0

2

∂v∗2
∂y

+ v∗2
∂v0

2

∂y
−N∗Lt∗1 +

∂p∗3
∂y
− ∂2v∗2
∂y2
− ∂2v∗2
∂z2

= 0, (2.29)

u0
1

∂w∗2
∂X

+ v0
2

∂w∗2
∂y

+
∂p∗3
∂z
− ∂2w∗2

∂y2
− ∂2w∗2

∂z2
= 0, (2.30)

u0
1

∂t∗1
∂X

+ u∗1
∂t01
∂X

+ v0
2

∂t∗1
∂y

+ v∗2
∂t01
∂y
− Pr−1 ∂

2t∗1
∂y2
− Pr−1 ∂

2t∗1
∂z2

= 0, (2.31)

with upstream condition

u∗1 = ust, v∗2 = vst, w∗2 = wst, t∗1 = tst, for X = 1, (2.32)

wall condition

u∗1 = v∗2 = w∗2 =
∂t∗1
∂y

= 0 for y = 0, (2.33)

and matching condition

u∗1 =
∂v∗2
∂y

= w∗2 = t∗1 = 0 for y = ∞. (2.34)

Similar to the above, v∗2 , w∗2 , and p∗3 appear in equations (2.27)–(2.34) and must
be solved for; their solution can be disregarded however since these terms are of

O(εGr∗L
−1/5) and O(εGr∗L

−2/5), respectively. Equations (2.27)–(2.34) are linear because
the basic flow is known from equations (2.22)–(2.26) and are susceptible to a down-
stream marching solution scheme, since the perturbation method has changed the
type of the differential equations to become parabolic in the downstream direction.
The marching solution is carried out using the simpler (Patankar 1980) finite volume
procedure.

2.2.3. Second order

In the second-order problem a solution is sought to the O(ε2) terms in (2.17)–(2.21),
i.e. for u∗∗1 , v∗∗1 , w∗∗1 , p∗∗1 , and t∗∗1 . Similar to the above, one immediately arrives at
v∗∗1 = w∗∗1 = p∗∗1 = 0, and u∗∗1 , t∗∗1 must be determined from

∂u∗∗1
∂X

+
∂v∗∗2
∂y

+
∂w∗∗2
∂z

= 0, (2.35)

u0
1

∂u∗∗1
∂X

+ u∗∗1
∂u0

1

∂X
+ v0

2

∂u∗∗1
∂y

+ v∗∗2
∂u0

1

∂y
− t∗∗1 − ∂2u∗∗1

∂y2
− ∂2u∗∗1

∂z2

= −u∗1 ∂u
∗
1

∂X
− v∗2 ∂u

∗
1

∂y
− w∗2 ∂u

∗
1

∂z
, (2.36)
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u0
1

∂v∗∗2
∂X

+ u∗∗1
∂v0

2

∂X
+ v0

2

∂v∗∗2
∂y

+ v∗∗2
∂v0

2

∂y
−N∗Lt∗∗1 +

∂p∗∗3
∂y
− ∂2v∗∗2

∂y2
− ∂2v∗∗2

∂z2

= −u∗1 ∂v
∗
2

∂X
− v∗2 ∂v

∗
2

∂y
− w∗2 ∂v

∗
2

∂z
, (2.37)

u0
1

∂w∗∗2
∂X

+ v0
2

∂w∗∗2
∂y

+
∂p∗∗3
∂z
− ∂2w∗∗2

∂y2
− ∂2w∗∗2

∂z2

= −u∗1 ∂w
∗
2

∂X
− v∗2 ∂w

∗
2

∂y
− w∗2 ∂w

∗
2

∂z
, (2.38)

u0
1

∂t∗∗1
∂X

+ u∗∗1
∂t01
∂X

+ v0
2

∂t∗∗1
∂y

+ v∗∗2
∂t01
∂y
− Pr−1 ∂

2t∗∗1
∂y2

− Pr−1 ∂
2t∗∗1
∂z2

= −u∗1 ∂t
∗
1

∂X
− v∗2 ∂t

∗
1

∂y
− w∗2 ∂t

∗
1

∂z
, (2.39)

with upstream condition

u∗∗1 = v∗∗2 = w∗∗2 = t∗∗1 = 0 for X = 1, (2.40)

wall condition

u∗∗1 = v∗∗2 = w∗∗2 =
∂t∗∗1
∂y

= 0 for y = 0, (2.41)

and matching condition

u∗∗1 =
∂v∗∗2
∂y

= w∗∗2 = t∗∗1 = 0 for y = ∞. (2.42)

Again, (2.35)–(2.42) are a set of linear differential equations parabolic in the down-
stream direction which are readily solved using the above mentioned marching scheme,
after the first-order variables are determined.

2.2.4. Third, fourth order

Equations up to the fourth order are derived and successively solved using the
marching scheme. The linear nature all of those ensures a rapid numerical solution.
However, from fourth order on the increasing number of successive problems to be
solved no longer leads to any improvement in computation time over the strongly
nonlinear approach presented in § 2.3. Nevertheless, the five-term weakly nonlinear
approach enables a solution through almost all of the transition regime up to the
appearance of unsteady secondary instabilities which cannot be captured by the
steady approaches presented herein anyway.

The weakly nonlinear solution of the inner problem can be summarized as

U = u0
1 + εu∗1 + ε2u∗∗1 + · · ·+ O(Gr∗L

−1/5
), (2.43)

V = 0 + O(Gr∗L
−1/5

), (2.44)

W = 0 + O(Gr∗L
−1/5

), (2.45)

P = const.+ O(Gr∗L
−1/5

), (2.46)

T = t01 + εt∗1 + ε2t∗∗1 + · · ·+ O(Gr∗L
−1/5

), (2.47)
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with

X, y, z, const. = O(1).

Even though the cross-stream velocities of O(Gr∗L
−1/5) or smaller are calculated, they

are not listed here for consistency reasons, since U and T are not determined to
this high order. However, the solution to these higher-order cross-stream velocities is
discussed in § 4.2 (cf. figure 5a).

Let h = q̇w/(Tw − T∞) be the heat transfer coefficient; then local Nusselt numbers
Nu = hx+/λ follow from

Nu = Gr∗L
1/5
X{t01(X, 0) + εt∗1(X, 0, z) + ε2t∗∗1 (X, 0, z) + · · ·+ O(Gr∗L

−1/5
)}−1 (2.48)

and local Nusselt numbers for the unperturbed basic solution from

Nugr = Gr∗L
1/5
X

1

t01(X, 0)
. (2.49)

Local Grashof numbers Gr∗ = βq̇wg cos γx+4
/(λν2) and stability parameters N∗ =

tan γGr∗1/5 are determined from the corresponding parameters evaluated at L by

Gr∗ = Gr∗LX
4, (2.50)

N∗ = N∗LX
4/5. (2.51)

2.3. Strongly nonlinear approximation

Near the end of the transition regime the vortical disturbances acquire amplitudes of
the order of the basic flow values so that the limit ε → 0 is not justified anymore.
Only the singular perturbation problem associated with Gr∗L → ∞ remains. Again,
the method of matched asymptotic expansions can be formally applied to derive a
consistent set of governing equations to the leading order in Gr∗L.

As above, up to the leading term in Gr∗L the outer expansion gives the trivial
solution. The inner solution is constructed as described by equations (2.14)–(2.16) and
the dependent variables can be expanded as

U = u0
1 + u∗1 + Gr∗L

−1/5
[u0

2 + u∗2] + · · · , (2.52)

V = v0
1 + v∗1 + Gr∗L

−1/5
[v0

2 + v∗2] + · · · , (2.53)

W = 0 + w∗1 + Gr∗L
−1/5

[0 + w∗2] + · · · , (2.54)

P = p0
1 + p∗1 + Gr∗L

−1/5
[p0

2 + p∗2] + · · · , (2.55)

T = t01 + t∗1 + Gr∗L
−1/5

[t02 + t∗2] + · · · , (2.56)

with

u0
1, u
∗
1, . . . , v

0
1 , v
∗
1 , . . . = O(1)

and

X, y, z = O(1), Gr∗L →∞.
In (2.52)–(2.56), for mathematical convenience the dependent variables are split into
the basic solution variables (denoted by 0), being functions of (X, y) with no spanwise
velocity component, and the disturbance variables (denoted by ∗), being functions of
(X, y, z). No assumption is made about the smallness of the disturbances relative to
the basic flow.
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Substituting (2.52)–(2.56) into (2.3)–(2.13), taking the limits (2.1), (2.2) (except
ε→ 0) and carrying out the same procedure as above then leads to the zeroth-order
approximations given below (see Jeschke 1998).

2.3.1. Zeroth order

In the zeroth-order problem a solution is sought to the O(1) terms in (2.52)–(2.56).
One immediately arrives at v0

1 = 0, p0
1 = const, and u0

1, t
0
1 are governed by a set of

equations formally identical with (2.22)–(2.26). Thereby, the basic flow solution is
identical to the above. For the disturbance quantities one finds v∗1 = w∗1 = p∗1 = 0, and
for u∗1 and t∗1 the set of equations

∂u∗1
∂X

+
∂v∗2
∂y

+
∂w∗2
∂z

= 0, (2.57)

u0
1

∂u∗1
∂X

+ u∗1
∂u0

1

∂X
+ v0

2

∂u∗1
∂y

+ v∗2
∂u0

1

∂y
− t∗1 − ∂2u∗1

∂y2
− ∂2u∗1
∂z2

= −u∗1 ∂u
∗
1

∂X
− v∗2 ∂u

∗
1

∂y
− w∗2 ∂u

∗
1

∂z
,

(2.58)

u0
1

∂v∗2
∂X

+ u∗1
∂v0

2

∂X
+ v0

2

∂v∗2
∂y

+ v∗2
∂v0

2

∂y
−N∗Lt∗1 +

∂p∗3
∂y
− ∂2v∗2
∂y2
− ∂2v∗2
∂z2

= −u∗1 ∂v
∗
2

∂X
− v∗2 ∂v

∗
2

∂y
− w∗2 ∂v

∗
2

∂z
, (2.59)

u0
1

∂w∗2
∂X

+v0
2

∂w∗2
∂y

+
∂p∗3
∂z
− ∂

2w∗2
∂y2
− ∂

2w∗2
∂z2

= −u∗1 ∂w
∗
2

∂X
−v∗2 ∂w

∗
2

∂y
−w∗2 ∂w

∗
2

∂z
, (2.60)

u0
1

∂t∗1
∂X

+ u∗1
∂t01
∂X

+ v0
2

∂t∗1
∂y

+ v∗2
∂t01
∂y
− Pr−1 ∂

2t∗1
∂y2
− Pr−1 ∂

2t∗1
∂z2

= −u∗1 ∂t
∗
1

∂X
− v∗2 ∂t

∗
1

∂y
− w∗2 ∂t

∗
1

∂z
, (2.61)

with upstream condition

u∗1 = εust, v∗2 = εvst, w∗2 = εwst, t∗1 = εtst for X = 1, (2.62)

wall condition

u∗1 = v∗2 = w∗2 =
∂t∗1
∂y

= 0 for y = 0, (2.63)

and matching condition

u∗1 =
∂v∗2
∂y

= w∗2 = t∗1 = 0 for y = ∞. (2.64)

Equations (2.57)–(2.64) are parabolic in the downstream direction and are readily
solved using the above mentioned marching scheme. The nonlinearity of the right-
hand-side terms presents no difficulty in principle since the solution scheme is an
iterative one, but the iterations necessary to achieve a converged solution increase
significantly.

The strongly nonlinear solution of the inner problem can be summarized as

U = u0
1 + u∗1 + O(Gr∗L

−1/5
), (2.65)
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Figure 3. Sketch of the experimental apparatus.

V = 0 + O(Gr∗L
−1/5

), (2.66)

W = 0 + O(Gr∗L
−1/5

), (2.67)

P = const.+ O(Gr∗L
−1/5

), (2.68)

T = t01 + t∗1 + O(Gr∗L
−1/5

), (2.69)

with

X, y, z, const. = O(1).

Local Nusselt numbers follow from

Nu = Gr∗L
1/5
X{t01(X, 0) + t∗1(X, 0, z) + O(Gr∗L

−1/5
)}−1 (2.70)

and Nugr , Gr
∗, N∗ follow from equations formally identical to (2.49)–(2.51).

3. Experimental method
Only a brief outline of the experimental method is given here. Details can be

found in Jeschke (1998) and Jeschke et al. (2000). As sketched in figure 3 a 74 cm×
47 cm × 38 cm Plexiglas water tank is used. The tank’s bottom plate is removable
and holds the 30 cm wide and 50 cm long measuring section which is composed
of a thin stainless steel foil, laid above a polyester foil coated with thermochromic
liquid crystals (TLCs) and a black backing paint, a thin layer of silicone oil, and the
supporting Plexiglas plate. A new vacuum technique (Jeschke, Biertümpfel & Beer
1998b) provides a compact composite of the layers, perfectly flat and free of wrinkles
over the whole measuring section and during all heating conditions of the steel foil
that produces the uniform heat flux boundary condition. The vacuum between the
steel foil and the copper bars to which the d.c. voltage is applied also provides a
very good and homogeneous electric contact. At the upstream end this gives rise to
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a spanwise homogeneous heat flux q̇w abruptly starting at x+ = 0 and being zero
for x+ < 0 where the large area of the copper bar in good thermal contact with the
ambient water leads to a constant wall temperature Tw = T∞. Thereby, the upstream
boundary condition as specified in figure 2 and equations (2.8) and (2.9) is satisfied
as well as possible with the least possible thermal and fluid flow disturbances, which
is important for the primary stability problem.

Surface temperatures Tw are deduced from the TLCs colour distribution which is
videographed from behind the tank with the aid of a CCD video camera at a resol-
ution of 768 × 574 pixels. With the camera lens type used this permits a resolution
of up to ≈ 22 000 measuring points (pixels) per cm2 or ≈ 15 pixels per mm in both
surface directions. A copper plate mounted on the outside of the tank, within which
a defined linear temperature distribution is produced, is used for the TLC colour-to-
temperature calibration. Using this calibration the measuring section’s TLC colour
distribution is transformed into surface temperatures and subsequently into heat
transfer coefficients, Nusselt numbers etc., in almost real time by a computer-based
data processing system including a colour space conversion. Surface temperatures
are estimated to be accurate up to ± 0.15 ◦C in addition to the accuracy of the
thermocouples which is of a similar magnitude. Thermocouples within the tank are
used to measure the far-field temperature T∞ and to check the allowable temperature
stratification. The whole apparatus shown in figure 3 can be rotated through 360◦
allowing easy investigation of arbitrary angles of inclination γ.

In addition to the TLC thermography an electrochemical flow visualization method,
previously used by, amongst others, Sparrow & Husar (1969), is employed. The
application of this method is described in Jeschke, Biertümpfel & Beer (1998a).

4. Results
4.1. Standard case

The theoretical results are presented exclusively for one standard case that is used to
outline the general physics of the flow. For this standard case the upstream conditions,
as needed for the weakly nonlinear marching solution (equation (2.32)) and the
strongly nonlinear one (equation (2.62)), are taken from the so-called local analysis
of equations (2.27)–(2.34). For this analysis a (modified) parallel flow approximation
for the basic flow is made such that the coefficients u0

1, ∂u
0
1/∂X, . . . in equations

(2.27)–(2.31) are locally applied at X = 1. The equations are then susceptible to a
separation of variables solution. Since the kinematics of the primary instability mode
are found in § 4.2 to be characterized by steady, downstream growing, and counter-
rotating longitudinal vortices of constant dimensional wavelength λ, this separation
of variables solution is made in the familiar form

u∗1 = ust = ū(y) cos (αz) exp

∫
β dX, (4.1)

v∗2 = vst = v̄(y) cos (αz) exp

∫
β dX, (4.2)

w∗2 = wst = w̄(y) sin (αz) exp

∫
β dX, (4.3)

p∗3 = pst = p̄(y) cos (αz) exp

∫
β dX, (4.4)

t∗1 = tst = t̄(y) cos (αz) exp

∫
β dX. (4.5)
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Figure 4. Normal-mode eigenfunctions for standard case upstream conditions.

The integral over X is such that it becomes 0 at X = 1 irrespective of β. Inserting
(4.1)–(4.5) into (2.27)–(2.34) then leads to a linear eigenvalue problem with α,N∗L,
and β being the eigenvalues and ū, v̄, w̄, p̄, t̄ the eigenfunctions. The dimensionless

wavenumber α is defined as α = 2πLGr∗−1/5

L /λ. This so-called normal-mode solution is
provided in Jeschke (1998).

Using the normal-mode solution to specify the upstream conditions needs some jus-
tification. Hall (1983) has shown that in Görtler flow, apart from the high-wavenumber
limit, the local normal-mode eigenvalue solution cannot be formally justified for find-
ing neutral stability. The same should also apply for the natural convection case
treated here. However, Kalburgi, Mangalam & Dagenhart (1988) and Day, Herbert
& Saric (1990) compare the local analysis to Hall’s initial value approach. They
show that with the marching solution, after some downstream distance more or less
arbitray initial values converge to flow patterns and growth rates very similar to
the normal-mode solution, and vice versa: using the normal-mode solution as in-
itial conditions, the marching solution converges over a shorter streamwise distance
to solutions that are consistent with the full equations rather than with arbitrary
initial conditions. Since it clearly is not our purpose to find neutral stability but to
concentrate on the nonlinear behaviour further downstream, the ad hoc nature of
the parallel flow approximation is therefore accepted and the normal-mode solution,
applied somewhat beyond the neutral curve at β = 0.93, is taken as initial condition
for the marching solution. This practice has also been applied by Lee & Liu (1992)
and Benmalek & Saric (1994) for a similar purpose in Görtler flow.

In summary, the upstream conditions for the standard case are taken to be

N∗L = 14.2711, α = 0.7800, β = 0.9321, ε = 0.0002, P r = 5.414, (4.6)

with the corresponding eigenvectors given in figure 4. The standard cross-sectional
computational domain for the marching solution spans half a vortex wavelength
with 30 grid points in the z-direction and 40 in the y-direction which are adequately
concentrated near the wall. The downstream distance from X = 1 to X = 10 is
covered with 250 grid points. Symmetry conditions are applied on the z-boundaries.
Computation times are in the range of a few minutes on a regular PC for the five-
term weakly nonlinear expansion as well as for the nonlinear approach. For clarity,
results are presented only for the nonlinear approach. The weakly nonlinear results
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duplicate the nonlinear ones until the end of the transition where the weakly nonlinear
approach breaks down (see Jeschke 1998).

For the heat transfer measurements presented in figures 8, 10 and 11 the standard
system setting defined by

γ = 25◦, q̇w = 5268.7 W m−2, T∞ = 22.9 ◦C, (4.7)

is applied. The measuring plate’s TLC image is videographed section-wise. Five
sections of 6 cm× 8 cm are taken covering the downstream distance from x+ = 3 cm
to x+ = 33 cm at a spanwise width of 8 cm. Each of the sections is measured with a
resolution of ≈ 10 measuring points per mm in both surface directions giving a total
of ≈ 1 200 000 measuring points. The film temperature, averaged over all of them, is
found to be ≈ 30 ◦C for which all the fluid properties of water are evaluated and which
corresponds to Pr = 5.414 as used for the theoretical results. For each curve in figure
8 approximately 250 measuring points in the z+-direction, covering ≈ 3.5 wavelengths,
are depicted. Each of these ≈ 250 measuring points is downstream-averaged over 20
pixels (corresponding to ∆x+ ≈ 2 mm) for noise reduction but no further smoothing
or filtering is applied. The downstream averaging is justified by the flow’s long-
scale downstream variation, characterized by L. However, no spanwise averaging is
performed, thereby keeping the high resolution in the spanwise direction which is
associated with a short scale variation corresponding to the typical length λ/2 =
O(LGr∗L−1/5). For figure 11 approximately 2200 measuring points in the downstream
direction are taken, each of which is averaged over the ≈ 250 pixels in the z+-direction
shown in figure 8 (no downstream averaging). This gives such a smooth curve that it
is necessary to artificially magnify the experimental scatter to remain visible.

From equations (4.6) and (4.7)

Gr∗L =

(
N∗L

tan γ

)5

(4.8)

can be evaluated and equation (2.50) then brings the theoretical downstream measure
X in relation to the experimental downstream measure Gr∗. As a reference, the basic
flow Nusselt number Nugr from equation (2.49) and the turbulent Nusselt number
Nuturb taken from the correlation from Vliet (1969)

Nuturb = 0.302(Gr∗Pr)0.24 (4.9)

are plotted in the figures for the heat transfer results.

4.2. Kinematics

The velocity vector plots of figure 5(a) reveal that the longitudinal vortices are
composed of a pair of streamwise-oriented, counter-rotating vortices having a period-
icity in the span-wise direction with a wavelength λ encompassing two neighbouring
vortices. This wavelength is constant downstream as clearly can be seen in the TLC
visualization in figure 14. A videographed sequence of pictures similar to figure 14 and
the cross-stream flow visualization of figure 6 prove that the vortices are steady up to
the beginning of secondary instabilities. But the vortex instability is of the convective
type and the disturbance velocities associated with the vortices grow downstream,
starting from an initial upstream value.

The vortices are confined to the boundary layer since only there does a heavy
top unstable temperature layer exist. Within this boundary layer the cross-stream
disturbance velocities, which are smaller than the mainstream disturbance velocities
by the factor Gr∗−1/5, alternately move near-wall fluid away from the wall in the
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Figure 5. (a) Downstream development of cross-stream velocities V ,W . (b) Contour plots of
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of isothermals T . Values range from 0.125 to 1.625 in steps of 0.125. (Nu/Nugr)mean is mean ratio of
Nusselt number and basic flow Nusselt number as in figure 9. Each set of plots is for the standard
case for three different values of the Grashof number.

upwash zone and far-field fluid towards the wall in the downwash zone. The result is
a wavy boundary layer structure comprising a sequence of thick and thin portions in
the span-wise direction which becomes increasingly pronounced in the downstream
direction. The wavyness of the velocity and temperature boundary layers is clearly
seen in figure 5(b) and 5(c), respectively.

A closer look at the velocity vector plots in figure 5(a) and the pathlines of figure
7 reveals the motion of the fluid particles. Far upstream the flow is dominated by
the two-dimensional basic state which is characterized in the cross-sectional plane
by far-field fluid being moved towards the wall over the whole span to account
for the fluid swept away within the boundary layer in the downstream direction.



Longitudinal vortices and their influence on heat transfer 329

y+

z+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

(cm)

Figure 6. Flow visualization (printed in black and white) for γ = 25◦ showing the view along x+;
dark areas represent streaklines of former near-wall particles.
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pathlines; z ranges over half a wavelength.

In this regime the fluid particles are merely pushed towards the wall while being
convected downstream with no change in spanwise position. Further downstream,
with developing vortical disturbances, these particles travel in the spanwise direction
parallel to the wall towards the upwash zone where they are convected away from the
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Figure 8. Downstream development of Nusselt numbers for the standard case. Noisy curves
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z+-direction. Smooth curves are the theoretical results. For better comparison, the theoretical curves
are shifted in the spanwise direction along with the experimental ones which drift to the left at
higher Gr∗ as a reaction to a sinuous mode secondary instability.
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wall until finally their wall-normal movement is stopped by the opposing incoming
far-field fluid. Thus, near-wall fluid particles do indeed only turn through 90◦ and
do not spiral as is generally suggested (e.g. Zuercher et al. 1998). This can clearly be
seen from the calculated pathlines in figure 7. Because of this motion, only streaky
upwash zones are seen in the flow visualization of figure 6 and not the mushroom
structure familiar from the Görtler case (Ito 1987). For the visualization in figure 6
the flow is videographed along the mainstream direction and the dark areas represent
streaklines of the former upstream near-wall fluid which is coloured there, using the
electrochemical technique mentioned in § 3. The streaklines of the flow visualization,
therefore, directly correspond to the calculated pathlines in figure 7 in this steady-state
situation and the agreement is convincing.

For higher Grashof numbers in figure 5(a) the downwash zone can be seen to be
wider than the upwash zone. This is a result of the nonlinear effects associated with
the vortices disturbance velocities and temperatures. This nonlinear behaviour is seen
only after a relatively long linear downstream vortex growth during which upwash
and downwash are equally wide and the vortices merely lead to a spanwise, periodic,
harmonic variation of the flow without an increase of integral parameters (such as
mean heat transfer coefficients, cf. figure 9) over the undisturbed values. It is the
widening of the downwash zone and the deviation from the harmonic variation in the
nonlinear regime which are responsible for the increase of integral values. In addition
to this, only in the nonlinear regime do the inflectional velocity profiles and strong
shear layers develop which destabilize the secondary instabilities, finally leading to
turbulence. Thus, it is because of the nonlinear effects that the subject of longitudinal
vortices receives so much attention.

4.3. Heat transfer

The effects on heat transfer are closely related to the extent to which the develop-
ment of the temperature boundary-layer thickness becomes distorted by the vortical
disturbances. These effects are qualitatively seen in the TLC image of figure 14. Far
upstream the small boundary-layer thickness of the two-dimensional basic flow leads
to such high heat transfer values that the wall temperature falls below the TLCs
minimum activation temperature. This causes the TLCs to become transparent and
the black backing paint to shine through. Further downstream the continuous thick-
ening of the boundary layer leads to successively lower heat transfer values (higher
wall temperatures) and thereby successively shorter dominant wavelengths reflected
from the TLCs, changing their colour from red, yellow to green. This mean trend is
superposed by a spanwise periodicity, caused by the developing vortices and becoming
continuously more pronounced down-stream, of alternately high heat transfer values
(red, yellow) in the thinned boundary-layer downwash zones and low heat transfer
values (green) in the thickened boundary-layer upwash zones.

This situation is quantitatively depicted in figure 8 revealing a very good agreement
between theoretical and measured spanwise Nusselt number distributions. Up to
Gr∗ = 1.50 × 109 practically no spanwise deviation from the basic flow Nusselt
numbers is observed. From then on, until about Gr∗ = 1.96 × 1010, a region follows
where a downstream-growing spanwise variation can be observed with the upwash
heat transfer clearly falling below the basic flow value and the downwash heat transfer
exceeding it, as can be seen in figures 9 and 10. However, this remains the linear
region where the vortical flow is governed (to a large extent) by the first-order linear
perturbation equations of § 2.2.2 leading to equally wide up- and downwash zones
with a decrease (upwash) and increase (downwash) of heat transfer values of equal
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amounts in both zones. As a result, the vortices lead to practically no net increase in
heat transfer, which is proven by the theoretical results depicted in figure 9 which give
an increase of only factor 1.01 at Gr∗ = 1.96× 1010 over the basic flow heat transfer
value. This is clearly confirmed by the experimental results shown in figure 11.

After this long linear vortex growth period without effects on mean heat transfer
values the nonlinear region, traditionally governed by nonlinear equations such as the
strongly non-linear approach of § 2.3, follows from about Gr∗ = 1.96×1010 onwards. It
is characterized by a widening of the downwash zone relative to the upwash zone (cf.
figures 8, 9) and an increase of heat transfer values in the downwash zone compared to
the basic flow values that is stronger than the decrease in the upwash zone (cf. figures
9, 10). Both effects lead to an increase of mean heat transfer values, which, with very
good agreement between theory and experiment, gradually change from laminar to
turbulent values as can be seen in figure 11. The vortices thus lead to a heat transfer
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Figure 11. Downstream development of mean Nusselt numbers for the standard case. Nugr from
equation (2.49) and Nuturb from equation (4.9).

increase by the factor 1.33 at Gr∗ = 5.80 × 1010 over the basic flow value (figure 9).
This nonlinear behaviour can also be seen qualitatively in figure 14 where, far enough
downstream, the upwash zones degenerate to small strips and the dominating black
colour, caused by the wall temperatures falling below the TLC minimum activation
temperature as a result of the high downwash heat transfer, clearly shows the mean
increase of heat transfer. Finally, from about Gr∗ = 5.80 × 1010 on, with the start
of the unsteady secondary instabilities, the hitherto good agreement in figure 8 and
figure 11 between experiment and theory vanishes since the theory does not capture
unsteadiness. However, at that point the heat transfer values have already reached
turbulent levels. This makes clear that the vortices account for practically all of the
increase from laminar to turbulent values during the transition process whereas the
secondary instabilities only exert a minor effect on heat transfer.

These effects of the vortices on heat transfer are analogous to what is observed
in the Görtler case and the mixed convection case (Jeschke 1998). However, in these
cases the heat transfer values differ significantly more in the up- and downwash
zones and mean values increase by up to factors 3–4 over the basic flow values at
the end of the transition for similar Prandtl numbers (compare figures 9 and 10
with the analogous figures presented by Jeschke (1998) for the other cases). This can
be attributed to the fact that the vortices generally account for the transition from
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Figure 12. Downstream development of mean Nusselt numbers for different inclination angles γ.
Material properties evaluated at 30 ◦C corresponding to Pr = 5.414. (a) γ = 50◦, q̇w = 6157.8 W m−2,
T∞ = 22.1◦C, (b) γ = 40◦, q̇w = 6522.1 W m−2, T∞ = 23.4 ◦C, (c) γ = 30◦, q̇w = 4176.0 W m−2,
T∞ = 25.3 ◦C, (d) γ = 25◦, q̇w = 5268.7 W m−2, T∞ = 22.9 ◦C, (e) γ = 20◦, q̇w = 6157.8 W m−2,
T∞ = 23.5 ◦C; ∗, γ = 29◦, q̇w = 2291 W m−2, Shaukatullah & Gebhart (1978). Nugr from equation
(2.49) and Nuturb from equation (4.9).
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Figure 13. Development of mean Nusselt numbers for different inclination angles γ as in figure 12

but as a function of the stability parameter N∗ = tan γGr∗1/5. Nugr from equation (2.49).

laminar to turbulent values which are larger in these cases by the factors mentioned
above.

Finally, as depicted in figures 12 and 13, the effect of the inclination angle γ
is investigated. The five angles γ = 20◦, 25◦, 30◦, 40◦, 50◦ are used and Nusselt
numbers are determined for each of them from at least 500 downstream measuring
points, each of which is spanwise averaged over ≈ 300–400 pixels. As is seen in
figure 12, the transition Grashof number decreases with an increasing destabilizing
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wall-normal buoyancy force at increasing inclination angles. This causes transition
to begin as early as at Gr∗ ≈ 3 × 108 for γ = 50◦ whereas for γ = 20◦ it begins at
Gr∗ ≈ 1 × 1011. However, the start of transition is correlated well by the stability
parameter N∗ = tan γGr∗1/5, as can be seen in figure 13. It is also noticeable that for
large inclination angles the Nusselt numbers exceed the turbulent values at the end
of the transition and later approach the turbulent values ‘from above’, cf. figure 12.
With the help of the flow visualization this is observed to be the result of a sudden
boundary-layer separation in the upwash zones at the end of the transition which
pushes cold far-field fluid towards the wall; this does not occur for smaller inclination
angles.

4.4. Secondary instabilities

Figures 14, 15 show TLC visualizations of the linear and nonlinear regimes. In the
strongly nonlinear regime, the vortex distortion leads to inflectional profiles of the
downstream velocity component and high-shear layers around the upwash section.
These provoke wave-like secondary instabilities of the Tollmien–Schlichting and the
Kelvin–Helmholz type which have been thoroughly investigated for the Görtler case
(Floryan 1991; Saric 1994).

A strongly distorted streamwise velocity contour well within the nonlinear regime
at Gr∗ = 5.80 × 1010 is shown in figure 5(b). High values of ∂u/∂z at the upwash
sides then lead to the two wave modes shown in the TLC visualizations of figure
15. The first is the sinuous mode characterized by two neighbouring waves being
in phase, which is approximately the case in figure 15(a), and the second is the
varicose mode with a phase shift of half a period which is depicted in figure 15(b). In
qualitative agreement with stability analyses of the Görtler case, the sinuous mode is
observed more frequently than the varicose one in the experiments of this study. In
fact, a sinuous mode can be identified in the Nusselt number distribution of figure 8,
where the experimental curves drift to the left from approximately Gr∗ = 5.80× 1010

onwards. This leads to the wavy mean Nusselt number distribution in figure 11 which
is caused by vortices drifting in and out of the measuring section. (The discontinuity
in the distribution of figure 11 comes from the fact that the measurements within
the succeeding sections are performed at a time difference of several seconds during
which several waves pass through.)

Horseshoe vortices are not observed in the flow visualizations and TLC images
of this study. As in the Görtler case, one would expect them to be generated from
spanwise vortices arising from strong gradients ∂u/∂y on top of the upwash (cf. figure
5b) through a Kelvin–Helmholz instability (Floryan 1991). The lack of horseshoe
vortices could be related to the fact that the sense of rotation of the spanwise vortex
would be different in the natural convection case, since, in contrast to the Görtler
case, the upwash carries the high-momentum fluid.

A frequently observed third instability is depicted in figure 15(c). The TLC visu-
alization suggests that two neighbouring vortices merge thereby effectively doubling
the wavelength. However, the flow visualizations reveal that for larger inclination
angles (γ > 40◦) similar TLC images are produced as a result of spanwise shifting of
vortices owing to local boundary-layer separations. In effect, the hot upwash legs are
seen to merge into plumes that lift off the plate allowing the neighbouring vortices
to move in the spanwise direction. The schlieren pictures in Zuercher et al. (1998)
for γ = 40◦ and γ = 60◦ show a merger of the hot-upwash schlieren streaks which is
likely to be caused by the same effect rather than by true merging of vortices. For
these larger inclination angles the vortex inception and subsequent breakdown occurs
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for such low Grashof numbers (cf. figure 12) that there is only a weak destabilization
of the wave modes. This should explain why the wave modes are not dominant in
the schlieren pictures of Zuercher et al. (1998). However, for γ = 20◦ in figure 15 no
boundary-layer separation is observed in our flow visualization, thus supporting the
interpretation that for smaller angles vortices frequently indeed ‘merge’. However, the
wave modes were always dominant in our experiments at lower inclination angles.

5. Conclusions
The linear and nonlinear vortex growth and the breakdown structure through sec-

ondary instabilities of a longitudinal vortex system in a natural convection prototype
problem is investigated. The thoretical method is based on a formal perturbation
method which leads to a consistent set of governing equations for the linear and
nonlinear vortex regime. By carrying out an expansion in ε within the scope of a
new weakly nonlinear approach, a set of linear governing equations is derived so
that the nonlinear vortex growth can be calculated from exclusively linear equations.
For the natural convection flow of this study the weakly nonlinear approach and
an additional strongly nonlinear approach are used to predict for the first time the
increase of integral parameters such as mean heat transfer values during the nonlinear
transition. TLC thermography is used to provide high-resolution, full-field, highly ac-
curate wall temperature measurements and visualizations for this flow configuration
that previously were not available.

The kinematics of the vortices turns out to be analogous to what is known of the
Görtler case, but near-wall fluid particles only travel through a 90◦ bend and do not
perform a spiralling motion as is generally suggested. Nonlinear effects are seen only
after a relatively long period of linear vortex growth during which the vortices cause
a spanwise periodicity of the flow without an increase of integral parameters. The
nonlinear interaction of the disturbance quantities then leads to a widening of the
downwash zone relative to the upwash zone and a greater increase of heat transfer
values in the downwash zone compared to the basic flow values than the decrease in
the upwash zone. The result is a gradual increase of mean heat transfer values from
laminar to turbulent levels. A comparison between theory and experiment makes
clear that the vortices account for practically all of the increase during the transition
process whereas secondary instabilities only have a minor effect on heat transfer.
These secondary instabilities are destabilized by high-shear layers around the upwash
section in the strongly nonlinear regime. Of the two unsteady modes, the sinuous and
the varicose, the former is observed more often. In addition, the TLC visualizations
frequently suggest a steady merging of two neighbouring vortices.
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